

User guide for PLEIADI @ IRA

This guide is aimed at users of our clusters to respond to frequently asked questions
about HPC systems

Vs 1.2, September 2022

Contents

Introduction 2

Gentlemen’s agreement 2

Rules for the use of the PLEIADI cluster 2

Account expiration and data storage policy 3

Account 3

Data Storage 3

Storage Quota 3

First access 3

File transfer and storage 4

Data Transfer 4

Storage on Pleiadi nodes 5

Pleiadi@IRA Technical specifications 6

Using the PLEIADI cluster with SLURM 7

Job Submission 7

Main Directives 8

Interactive sessions on computing nodes 10

Execution of MPI runs 11

Example of script sbatch MPI 11

Available applications and MPI compiler 12

APPENDIX A: generate submission scripts from csv files 13

APPENDIX B: Singularity container (Apptainer) 14

Introduction

The current guide illustrates the use of PLEIADI systems based on SLURM scheduler. The document specifically
refers to the use of the PLEIADI cluster hosted at the Institute of Radioastronomy of Bologna [PLEIADI @ IRA]
but the general information is general parts also applicable to other systems using SLURM.

Gentlemen’s agreement

● Using our systems for research purposes, the user automatically authorizes the Staff of the pleiadi.inaf.it
node used to publish their personal data (name, surname, research group) and the data associated with
the search on the website (pleiadi.inaf.it) and in all other paper publications disseminated by PLEIADI
(annual reports, presentations, etc.), as well as in any other media.

● By using our PLEIADI systems for research purposes, the user agrees to mention the PLEIADI services in
all their scientific articles in papers, conferences, books or other types of media. We suggest the
following quote: "The INAF PLEIADI computing resources (http://www.pleiadi.inaf.it) were used".

Rules for the use of the PLEIADI cluster

● Calculations, simulations, etc. should NEVER be run directly from the command line. The code will run
on the login node which is NOT part of the PLEIADI system. In addition the login node will hang, making
it unusable. ALWAYS go through the execution queues of the scheduler (even for compilation).

● Use of computing resources outside the training and / or research activities is NOT allowed.

● The Project PI is responsible for any activity carried out or attributable to the usage of the account and
for the distribution of the login credentials to the project collaborators

The PLEIADI @ INAF project provides HPC computing resources and technical support for research and training
activities.

The computing resources, hosted and managed at three INAF structures (O.A.Trieste, O.A.Catania, IRA Bologna)
are administered in a coordinated manner by a board (board.pleiadi@inaf.it) which assigns the computing time
and credentials for the use of resources.

The three centers provide diversified resources and it is the task of the board to direct users to the different
centers according to specific requests and needs.

Each project group will be assigned an account that will allow access to the resources listed below. Additional
accounts can be assigned to the single project and all accounts will be part of the same UNIX group, with an
independent / home but sharing the working storage.

mailto:board.pleiadi@inaf.it

Account expiration and data storage policy

Account

The account is to be considered active from the moment you receive the confirmation email containing your
login credentials. The account expires as indicated in the application form. To renew the account, the same form
sent in the first request must be sent again, changing the fields with the updated information.

Data Storage

If the account is not reactivated within 6 months after the deadline indicated in the application form, two
compressed archives are created containing all the files in the home directory and in the work directory.
Compressed archives are placed in the same home directory for the home directory and in your own directory
in work for the work directory. After a further 6 months period from the creation of the compressed archives (a
total of one year from the expiration of the account), all the archives are permanently removed from the storage
and the account is deleted.

Storage Quota

Storage quota available to users:

● /homes/<user> The quota of the HOME directory is 50 GBy

● /iranet/home2/<user> Each group can have up to 10 TBy of space

Users can request an increase in the group quota by sending us an email detailing and justifying the request. The
request will then be evaluated by the local staff. Any extensions to the quotas relating to the space that can be
used for user data must have an expiration and its duration has to be as short as possible. The extension cannot
exceed the expiry date provided for the account.

For accounts that at the monthly check following the expiration of the account results to be over-quota, the
data will be archived as soon as the normal grace time granted (7 days) has elapsed. If at the next monthly check
the account is still over-quota, the archived files will be removed.

First access

The usernames provided to users are of the "pleiaXX" type (pleia01, pleia02 ... pleia99). Here “pleia0x” is used
as an example. We strongly recommend changing the password on the first log-in using the following command:

$ passwd

It is strongly recommended to choose a password consisting of more than 8 characters, containing numbers and
upper and lower case letters and special characters.

The users can access the servers: scheduler.ira.inaf.it and gaia.ira.inaf.it, having access to the corresponding
working areas.

● scheduler it is the server that allows you to launch batches on the HPC cluster
● gaia allows the efficient transfer of your data between Pleiadi and your local computers, also

provides a window manager via X2Go

Access to the cluster depends on the operating system used on your computer. If you have a Linux, Unix or OSX
system, you can use the ssh client from any terminal using the command:

$ ssh pleia0x@scheduler.ira.inaf.it

If you have a Windows system, we recommend using the PuTTY application (available at http://www.putty.org)
to be configured as shown in the figure:

Figure 1: Putty - Configuration for access from Windows systems

For graphical access, you can use X2Go (https://wiki.x2go.org) for which a server is available on Gaia.

File transfer and storage

Data Transfer

At log in, the user is in her/his home directory:

/homes/pleia0x/

Access to this directory is allowed only to the owner user who can use up to 50 GBy of disk space. The user and
other group members can request and share up to 10Tby of space in the /iranet/home2/xxx directory

To transfer files from your unix/linux host to your home directory on the Pleiadi cluster, you can use the scp
command:

$scp -r /local/dir/file pleia0x@gaia.ira.inaf.it:/homes/pleia0x

Vice versa, to copy a file from Pleiadi to your host use the following command:

$scp -r pleia0x@gaia.ira.inaf.it:file /local/dir/

On PC windows or Mac you can use programs such as FileZilla or WinSCP

mailto:pleia0x@scheduler.ira.inaf.it

Storage on Pleiadi nodes

For each job it is possible to temporarily use the additional space present on the local disks of the computational
nodes. This space is very limited:

/local/scratch 80 Gby

WARNING:

1. The filesystem is not accessible from the other nodes of the cluster

2. The available space depends on the use of the resource also by other jobs

3. It is compulsory to delete what is present in /local/scratch at the end of the job. Data left on this areas
will be deleted with no notice or backup by the system administrators

4. If your program saves output in the /local/scratch folder, it must be transferred to the assigned storage
areas.

Example sbatch

[esempio_script_con_tmpdir.sbatch]. . .

#!/bin/bash

#SBATCH --job-name=job_name

#SBATCH --mail-type=ALL

#SBATCH --mail-user=nome.cognome@inaf.it

#SBATCH --partition=pleiadi

#SBATCH --time=hh:mm:s

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=32

#SBATCH --output=job_name_%j.log

Copy files from storage HOME to local storage

cp -r /homes/pleia0x/data /local/scratch/data

Run the code

myexecutable -in /local/scratch/data -out /local/scratch/results

Copy data back from the local storage

 cp -r /local/scratch/results /home/myusername/results

 # Clear local scratch area

 rm –r /local/scratch/results

..

mailto:name.surname@polito.it

Pleiadi@IRA Technical specifications

Support: pleiadi-support@ira.inaf.it

Available Software : https://wiki.ira.inaf.it/wiki/index.php/Irasoft

Computing Nodes

Architecture Cluster Linux Infiniband-DDR MIMD Distributed Shared-Memory

Nodes interconnection Omnipath 100 Gb/s

Rete di Servizio Ethernet 1 GB/s

Modello CPU 2x INTEL Xeon E5-2697 V4 (turbo 3.6 GHz) 18 cores

OS Debian GNU/Linux 11

Scheduler SLURM 20.11

Performance FP32 0.66 TFLOPS / FT64 0.33 TFLOPS

Batch Codes Pleiadi

Number of Nodes 24

Cores 864

RAM memory Total/core 256 GBy / 7.0 GBy

Locale disk /local/scratch 80 GBy

Max. Time x job 3 days

Max Core/hours per job 50.000

USO HPC

Storage

Home Storage /homes/user 50 GBy per User

Working Storage /iranet/home2/user 10 TBy per Group (Lustre Filesystem)

Scratch /local/scratch 80 Gby

Remote access for tranfer file Ethernet 10Gbit/s

HPC batch frontend : scheduler.ira.inaf.it

Frontend for data transfers and graphic access via X2Go: gaia.ira.inaf.it

mailto:pleiadi-support@ira.inaf.it
https://wiki.ira.inaf.it/wiki/index.php/Irasoft

Using the PLEIADI cluster with SLURM

Batch processes have to be executed on the PLEIADI system: this means that they are not interactive and that
their execution can be postponed over time. Each task or job is made up of one or more processes that cooperate
together to achieve the targeted result.

A task is executed only after its scheduling; to allow scheduling, the job must be placed in a queue, managed by
the cluster, where it waits for the necessary resources to be available. The PLEIADI system uses the SLURM
scheduler.

Job Submission

$ sbatch

All jobs must be passed to the cluster's scheduler via submission. The submission of jobs takes place via the
sbatch command which has as argument the complete name of a script containing all the necessary
information.

The script file, also called sbatch script, is composed of a series of directives for the scheduler, followed by a
number of commands as they should be typed on the command line.

An example of a sbatch script is the following, all lines starting with #SBATCH are options for the scheduler,
and are not interpreted by the Linux shell.

……………………………………………………..[script.sbatch]………………………………………

#!/bin/bash

#SBATCH --job-name=job_name

#SBATCH --mail-type=ALL

#SBATCH --mail-user=nome.cognome@inaf.it

#SBATCH --partition=pleiadi

#SBATCH --time=hh:mm:ss

#SBATCH --nodes=1

#SBATCH --ntasks-per node=32

#SBATCH --output=job_name_%j.log

example_task.bin

……..

Now you can submit the script with:

$ sbatch script.sbatch

To create the script.sbatch file you can use your PC and then transfer it to the cluster, or edit it directly on the
cluster.

NOTES: text files created on DOS / Windows hosts have a different newline character than those created with
Unix-like systems. DOS uses 'carriage-return' and 'line feed', while Unix simply uses 'line-feed'. During a file
transfer between Windows and Unix hosts, care must therefore be taken to ensure that the end-of-lines are
correctly translated.

mailto:name.surname@polito.it

Main Directives

Directive Description

--output
Standard output is redirected to the specified file, by default
both standard output and standard error are redirected to the
same file.

--error Standard error is redirected to the specified file

--mail-user e-mail to send information on the task in progress.

--mail-type
Events triggering a notification via e-mail (eg ALL). Valid
values are: NONE, BEGIN, END, FAIL, REQUEUE, ALL.

--workdir={directory}
Executes the task using the specified {directory} as the working
directory (either an absolute or relative path can be specified).

--ntasks-per-node
Number of tasks per node, if used together with --ntasks this
latter directive will take precedence.

--cpus-per-task Required Number of CPU per task.

--ntasks Total number of tasks per job

--nodes Number of nodes to use

--time
Specifies the maximum run-time limit, which is the time it
takes for the process to reach the end of the computation. This
value must be less than 10 days (<240 hours) per partition task.

--mem-per-cpu Specifies the minimum memory required per allocated CPU,
expressed in megabytes (default = 1000)

--mem Specifies the actual memory required per node, expressed
in megabytes.

--partition Indicates the partition (queue) on which the job is to be
scheduled

--exclude Explicitly excludes the specified nodes from the resource set

--constraint
Nodes have some features assigned, users can specify which
features will be required by their job using this directive, for
example --constraint = "gpu". The available features can be
viewed in the Scheduling pool data section in the output of the
sjstat command (Other Traits column), or via scontrol show
node.

--gres=gpu:{N_of_gpu} Generic resource required per node, used to specify GPU
request per node (if GPUs are available)

For the full guide refer to: https://slurm.schedmd.com/sbatch.html.

https://slurm.schedmd.com/sbatch.html.

Job Control (sinfo, squeue, scancel, sstat)

To get information on the status of the cluster nodes and on the partitions (queues) available

$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

pleiadi up 1-00:00:00 12 down* r36c02s[01-12]

pleiadi up 1-00:00:00 24 unk* r36c05s[01-12],r36c06s[01-12]

pleiadi up 1-00:00:00 12 idle r36c01s[01-12]

To obtain information on the jobs scheduled with sbatch, such as job-ID, status, partition and the use of the
slot number, you can use the following command:

$ squeue -u username

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

600 pleiadi test username R 2-23:29:19 1 compute-0-1

601 pleiadi test username R 3:53:04 3 compute-0-[2-4]

 602 pleiadi test username R 7:55 1 compute-0-8

To get more information on the status of each specific job use:

$ scontrol show job 600

 JobId=600 JobName=test

UserId=test(500) GroupId=test(500) MCS_label=N/A

Priority=30937 Nice=0 Account=test QOS=normal

JobState=RUNNING Reason=None Dependency=(null)

Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

RunTime=04:07:05 TimeLimit=8-08:00:00 TimeMin=N/A

SubmitTime=2018-02-13T10:25:11 EligibleTime=2018-02-13T10:25:11

StartTime=2018-02-13T10:25:12 EndTime=2018-02-21T18:25:12 Deadline=N/A

PreemptTime=None SuspendTime=None SecsPreSuspend=0

Partition=pleiadi AllocNode:Sid=casperlogin:30786

ReqNodeList=(null) ExcNodeList=compute-0-8 NodeList=compute-0-[2-4]

BatchHost=compute-0-2

NumNodes=3 NumCPUs=96 NumTasks=96 CPUs/Task=1 ReqB:S:C:T=0:0:*:*

TRES=cpu=96,mem=240G,node=3

Socks/Node=* NtasksPerN:B:S:C=32:0:*:* CoreSpec=*

MinCPUsNode=32 MinMemoryNode=40G MinTmpDiskNode=0

Features=(null) DelayBoot=00:00:00

Gres=(null) Reservation=(null)

OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)

Command=/home/test/test.bin

WorkDir=/home/test/

StdErr=/home/test/job_600.log

StdIn=/dev/null

StdOut=/home/test/job_600.log

Power=

To get information on the entire cluster and on all running jobs use:

$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

520 pleiadi Bbrune_1 pleia0x PD 0:00 1 (Resources)

508 pleiadi Bbrune_1 pleia0x R 0:19 1 r36c01s01

509 pleiadi Bbrune_1 pleia0x R 0:15 1 r36c01s02

510 pleiadi Bbrune_1 pleia0x R 0:15 1 r36c01s03

511 pleiadi Bbrune_1 pleia0x R 0:15 1 r36c01s04

512 pleiadi Bbrune_1 pleia0x R 0:12 1 r36c01s05

513 pleiadi Bbrune_1 pleia0x R 0:12 1 r36c01s06

514 pleiadi Bbrune_1 pleia0x R 0:12 1 r36c01s07

515 pleiadi Bbrune_1 pleia0x R 0:12 1 r36c01s08

516 pleiadi Bbrune_1 pleia0x R 0:09 1 r36c01s09

517 pleiadi Bbrune_1 pleia0x R 0:09 1 r36c01s10

518 pleiadi Bbrune_1 pleia0x R 0:09 1 r36c01s11

519 pleiadi Bbrune_1 pleia0x R 0:09 1 r36c01s12

To stop and remove a job from a partition use:

$ scancel jobID

To collect statistics on currently running jobs you can use:

$ sstat --format=JobID,MaxRSS,AveRSS,AveCPU,NTask -j $JOBID --allsteps

JobID MaxRSS AveRSS AveCPU NTasks

JOBID.0 3248K 3248K 00:00.000 1

The above command only works for jobs run through srun interactive mode, for batch type jobs add .batch to

the specified $ jobID, as in the following example:

$ sstat --format=JobID,MaxRSS,AveRSS,AveCPU,NTask -j ${JOBID}.batch --

allsteps

JobID MaxRSS AveRSS AveCPU NTasks

…….

${JOBID}.batch 9488K 9488K 07:24.000 1

Interactive sessions on computing nodes

Whenever it is necessary to use an interactive session on a computing node, as, for instance, for compilation,
the use of the srun command is useful.

From the login node, an interactive session can be started using the srun command with the following syntax:

$ srun --nodes=1 --tasks-per-node=1 --pty /bin/bash

The srun options corresponds to the directives of a sbatch script (see above)

After use, the node must be released with the following procedure:

$ sinfo

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

588 pleiadi interact pleiadi0 R 3:36:54 1 r36c01s01

$ scancel 588

Please note that within a srun session only one node can be used for MPI applications. Trying to use more
than one node will cause mpirun to fail. In this case the salloc command can be used instead of srun. We
refer to the complete SLURM reference manual: https://slurm.schedmd.com

Execution of MPI runs

SLURM provides a variety of options to configure how resources should be reserved for the job. The following

table summarizes the main ones:

--nodes Each multi-core CPU corresponds to a node and their number is specified

through the directive --nodes

--ntasks Set the number of MPI processes

--ntasks-per-node It offers the possibility to control the number of tasks per single node

--cpus-per-task Sets the number of OpenMP threads per MPI task

Example of script sbatch MPI

……………………………………………… MPI case 1 [mpi1.sbatch ………………………………………

#!/bin/bash

#SBATCH --ntask=16

#SBATCH --cpus-per-task=1

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16

……..

This example requires 16 tasks, corresponding to 16 MPI processes, to which one CPU is associated per task.

All 16 tasks are bound to be executed on a single computation node. No multithreading is active.

………………………………………………………… MPI esempio 2 [mpi2.sbatch]… ……………..…………….

#!/bin/bash

#SBATCH --ntasks=32

#SBATCH --cpus-per-task=1

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=16

……...

In this example, 32 tasks are required split between 2 nodes, with 16 tasks for each node

…………………………………………………MPI esempio 3 [mpi3.sbatch………………………………..

#!/bin/bash

https://slurm.schedmd.com/

#SBATCH --ntasks=32

……..

In this third example 32 tasks are required and the choice of their distribution within the cluster is left to the

scheduler

………………………………....Casi d’uso MPI e OpenMP [mpiOpenMP.sbatch]………………….

#!/bin/bash

#SBATCH --ntasks=16

#SBATCH --cpus-per-task=4

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=4

…………………………………………………………………….…………………………………………

In this case, an application is run which, for each MPI process (or rank), uses multiple cores (via multithreading).
16 tasks (--ntasks = 16) and 4 cores per task (--cpus-per-task = 4) are required, so 16 * 4 = 64 total cores. The 16
tasks are split between 4 nodes (--nodes = 4) with 4 tasks per node (--ntasks-per-node = 4)

Available applications and MPI compiler

The Pleiadi@IRA Cluster can use the programs and libraries available at the IRA computing center. The list of

applications can be found at: https://wiki.ira.inaf.it/wiki/index.php/Irasoft.

 It is also possible to have a short list using the $setup-help command.

Before using an application or library it is necessary to define the dependencies with the "$xxxx-setup"

command, where xxxx is the name of the specific application. The setup allows you to choose the software

version to use.

To compile MPI programs it is necessary to use the $openmpi-setup command which configures the

environment for MPI. Then you find the classic commands: mpif90, mpicc, mpiCC, mpirun,

mpiexec

https://wiki.ira.inaf.it/wiki/index.php/Irasoft

APPENDIX A: generate submission scripts from csv files

For advanced tasks that require multiple execution of the same program, but with different parameters, we

suggest the use of the following script capable of generating multiple sbatch files starting from a text file

containing all the parameters.

............................[generate.sh]...............................

#!/bin/bash

list=$(cat ./parameters.csv)

for i in $list

 do

parameter1=$(echo $i|cut -f 1 -d ’,’) parameter2=$(echo $i|cut -f 2

-d ’,’) cat << EOF > ./test-$parameter1-$parameter2.sbatch

#!/bin/bash

#SBATCH --job-name=job_name

#SBATCH --mail-type=ALL

#SBATCH --mail-user=nome.cognome@inaf.it

#SBATCH --partition=pleiadi

#SBATCH --time=24:00:00

#SBATCH --nodes=3

#SBATCH --ntasks-per-node=32

#SBATCH --output=job_name_%j.log

example.bin $parameter1 $parameter2

EOF

done

..................................[parameter.csv]..................

A,1

A,2

B,1

B,2

...

mailto:nome.cognome@polito.it

APPENDIX B: Singularity container (Apptainer)

To offer users maximum flexibility, Singularity containers are supported. The complete reference manual is

available here: https://apptainer.org/docs/

Below is an example of creating and running a container with TensorFlow.

Step1: create a Singularity recipe file

There are several ways to create a container, one of them is starting from a Docker image. In this example, we
start with an NVIDIA Docker image

Create a tensorflowCentos.recipe file on your PC with the following content:

BootStrap: docker

From: nvidia/cuda:9.0-cudnn7-devel-centos7 # This is a comment

%runscript

echo "Hello from tensorflow

container" whoami

%post

echo "Hello from inside the container"

yum -y update && yum install -y epel-

release yum install -y python-pip

python-devel

pip2 install matplotlib h5py pillow tensorflow-gpu keras scikit-learn

Step2: build del container Singularity

There are different types of containers, in this case an immutable image will be created.

$ sudo singularity build tensorflowCentos.img tensorflowCentos.recipe

Step3: copy of the container to the cluster

$ scp tensorflowCentos.img {username}@{login-node}:/home/{login-

node}/tensorflowCentos.img

Step4: create the submission script

Log into the login node and create the following python file in your own home.

/home/{user name}/helloTensorflow.py

import tensorflow as tf

hello = tf.constant("Hello, TensorFlow!") sess = tf.Session()

print sess.run(hello)

exit()

http://hellotensorflow.py/

Create a singularity.sbatch file based on the following example:

#!/bin/bash

#SBATCH ——time =00:10:00

#SBATCH ——ntasks=1

#SBATCH ——partition=cuda

#SBATCH ——gres=gpu :1

#SBATCH ——job—name=singularityTest

#SBATCH ——mail—type=ALL

module load singularity /2.4.5

singularity exec ——nv tensorflowCentos . img bash —c ’ python

helloTensorflow . py ’

Now you can submit the job with the sbatch command:

sbatch singularity.sbatch

 [Adaptation to the PLEIADI@IRA system of the guide of Politecnico di Torino :
https://www.hpc.polito.it/docs/guide-slurm-it.pdf]

https://www.hpc.polito.it/docs/guide-slurm-it.pdf

